

Report ID 2020-W45 -MiniSOAG

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS/20/12425

Analog, MEMS & Sensors (AMS)

New assembly site for Standard products (General Purpose Analog) assembled in MiniSO8 packages

WHAT:

Progressing on activities related to process modernization and quality improvement, ST is pleased to announce the introduction of TSHT/China (subcontractor) for Assy and Test & Finishing activities for some products assembled in our MiniSO8 package for analog products. The Assembly production will gradually be transferred from Amkor (current subcontractor) to TSHT China.

lease internet e inte	ination related to material	change in the table here belet	
Material	Current process	Modified process	Comment
Diffusion location	ST Ang Mo Kio (Singapore)/ UMC / ST Agrate	ST Ang Mo Kio (Singapore)/ UMC / ST Agrate	
Assembly location	Amkor Philippines	TSHT China	
Molding compound	Sumitomo G700	Hitachi CEL 9220	
Die attach	Henkel 8290	Henkel 8200T/Henkel8600	
Leadframe	Copper	Copper	
Plating	NiPdAu	Matte Sn	
Wire	Gold 0.8Mil	Copper Pd coated 1 mil	
Appearance	AHHA KW2D BB2U BB2U BB2U		

Please find more information related to material change in the table here below

WHY:

The purpose of the introduction of TSHT for both Assy and Test & Finishing activities for the here above listed commercial products is to further improve the rationalization of our manufacturing assets and provide a better delivery support to our customers.

HOW:

The qualification program consists mainly of comparative electrical characterization and reliability tests.

You will find here after the qualification test plan which summarizes the various test methods and conditions that ST uses for this qualification program.

WHEN:

The new material set will be implemented in Q1/2021 in TSHT China.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets.

There is -as well- no change in the packing process or in the standard delivery quantities. Shipments may start earlier with the customer's written agreement.

Reliability Qualification plan

AMS Back-end qualification MSOP 8 Production transfer to TSHT

General In	formation] [Locations			
Product Line	<i>0193, 0358, V992, UY32, VB2F</i> Dual comparator bipolar, Dual op amp bipolar, , Dual op amp, biCMOS, Dual precision op		Wafer fab		ST Singapore UMC, ST Agrate, ST Crolles	
Product Description	amp, 4 A dual low-side, High bandwidth (50MHz) Low offset (250µV) Op amp		Assembly plant		TSHT China	
P/N	LM2903WST, LM2904WST, TSV992IST, TSX922IST, TSV792IYST		Reliability Lab		ST Grenoble, TSHT	
Product Group	AMS					
Product division	General Purpose Analog &RF					
Package	MiniSO8					
Silicon Process technology	Bipolar, HF5CMOS, HVG8A, HCMOS7					

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPI	LICABLE AND REFERENCE DOCUMENTS	. 10
2	GLO	SSARY	. 10
3	RELI	ABILITY EVALUATION OVERVIEW	. 10
	3.1	OBJECTIVES	. 10
	3.2	CONCLUSION	. 10
4	DEVI	CE CHARACTERISTICS	. 11
	4.1	DEVICE DESCRIPTION	. 11
	4.2	CONSTRUCTION NOTE	. 16
5	TEST	S PLAN SUMMARY	. 17
	5.1	TEST VEHICLE	. 17
	5.2	TEST PLAN SUMMARY	. 17
6	ANN	EXES	. 18
	6.1	TESTS DESCRIPTION	. 18

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
РСВ	Printed Circuit Board
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 **Objectives**

To qualify a new assembly site, TSHT China, for products in MiniSO8 package for Analog standard products

3.2 Conclusion

Qualification Plan requirements have to be fulfilled without issue. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 **Device description**

LM2903WST

LM2903W

Low-power, dual-voltage comparator

Datasheet – production data

Features

- Wide, single supply voltage range or dual supplies +2 V to +36 V or ±1 V to ±18 V
- Very low supply current (0.4 mA) independent of supply voltage (1 mW/comparator at +5 V)
- Low input bias current: 25 nA typ.
- Low input offset current: ±5 nA typ.
- Input common-mode voltage range includes negative rail
- Low output saturation voltage: 250 mV typ. (I_O = 4 mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, MOS, CMOS compatible outputs
- ESD internal protection: 2 kV

Description

This device consists of two independent lowpower voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

The input common-mode voltage range includes negative rail even though operated from a single power supply voltage.

All pins are protected against electrostatic discharge up to 2 kV. Consequently, the input voltages must not exceed the V_{CC}^+ or V_{CC}^- magnitudes.

LM2904WST.

LM2904, LM2904A LM2904W, LM2904AW Datasheet

Low-power dual operational amplifier

TSSOPE

808

Low input offset current: 2 nA Input common-mode voltage range includes negative rail

Large DC voltage gain: 100 dB

Differential input voltage range equal to the power supply voltage

Wide bandwidth (unity gain): 1.1 MHz (temperature compensated) Very low supply current/amplifier, essentially independent of supply voltage

Low input bias current: 20 nA (temperature compensated)

Large output voltage swing 0 V to [(V_{CC} ⁺) -1.5 V] .

Frequency compensation implemented internally

Description

Features

This circuit consists of two independent, high gain operational amplifiers (op amps) that have frequency compensation implemented internally. They are designed specifically for automotive and industrial control systems. The circuit operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard 5 V which is used in logic systems and easily provides the required electronic interfaces without requiring any additional power supply.

In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.

· · · · · · · · · · · · · · · · · · ·							
	Enhanced V _{IO}	Enhanced ESD					
LM2904							
LM2904A	1						
LM2904W		1					
LM2904AW	1	1					
Related products							
TSB572	Dual op-amps for low- power consumption (380 µA with 2.5 MHz GBP)						
LM2902 LM2902W	Quad op-amps version						
LM2904WH	High tem	High temperature					
LM2904AH	AH version (150 °C)						

TSV992IST

TSV991, TSV992, TSV994 TSV991A TSV992A, TSV994A Datasheet

Rail-to-rail input/output 20 MHz GBP operational amplifiers

Pin connections (top view)

Features

.

- Low input offset voltage: 1.5 mV max. (A grade)
 - Rail-to-rail input and output
- Wide bandwidth 20 MHz
- Stable for gain ≥ 4 or ≤ -3
- Low power consumption: 820 µA typ.
- High output current: 35 mA
- Operating from 2.5 V to 5.5 V
- Low input bias current, 1 pA typ.
- ESD internal protection ≥ 5 kV

Applications

- · Battery-powered applications
- Portable devices
- Signal conditioning and active filtering
- Medical instrumentation
- Automotive applications

Description

The TSV99x and TSV99xA family of single, dual, and quad operational amplifiers offers low voltage operation and rail-to-rail input and output. These devices feature an excellent speed/power consumption ratio, offering a 20 MHz gain-bandwidth, stable for gains above 4 (100 pF capacitive load), while consuming only 1.1 mA maximum at 5 V. They also feature an ultra-low input bias current. These characteristics make the TSV99x family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering. These characteristics make the TSV99x, TSV99xA family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

TSX922IST

TSX920, TSX921, TSX922, TSX923

10 MHz rail-to-rail CMOS 16 V operational amplifiers

Datasheet - production data

Features

- Rail-to-rail input and output
- Wide supply voltage: 4 V 16 V
- Gain bandwidth product: 10 MHz typ at 16 V
- Low power consumption: 2.8 mA typ per amplifier at 16 V
- Unity gain stable
- Low input bias current: 10 pA typ
- High tolerance to ESD: 4 kV HBM
- Extended temperature range:
- -40 °C to 125 °C
- Automotive qualification

Related products

- See the TSX5 series for low-power features
- See the TSX6 series for micro-power
- features
- See the TSX929 series for higher speeds
- See the TSV9 series for lower voltages

Applications

- Communications
- Process control
- Test equipment

Description

The TSX92x single and dual operational amplifiers (op amps) offer excellent AC characteristics such as 10 MHz gain bandwidth, 17 V/ms slew rate, and 0.0003 % THD+N. These features make the TSX92x family particularly well-adapted for communications, I/V amplifiers for ADCs, and active filtering applications.

Their rail-to-rail input and output capability, while operating on a wide supply voltage range of 4 V to 16 V, allows these devices to be used in a wide range of applications. Automotive qualification is available as these devices can be used in this market segment.

Shutdown mode is available on the single (TSX920) and dual (TSX923) versions enabling an important current consumption reduction while this function is active.

The TSX92x family is available in SMD packages featuring a high level of integration. The DFN8 package, used in the TSX922, with a typical size of 2x2 mm and a maximum height of 0.8 mm offers even greater package size reduction.

Table 1: Device s	ummary
-------------------	--------

Op-amp version	With shutdown mode	Without shutdown mode		
Single	TSX920	TSX921		
Dual	TSX923	TSX922		

TSV792IST

TSV791, TSV792

Datasheet

High bandwidth (50 MHz) low offset (200 µV) rail-to-rail 5 V op-amp

TSV791 SOT23-5

TSV792 MiniSO8

TSV792

DFN8 2x2 mm

TSV792

SO8

- Gain bandwidth product 50 MHz, unity gain stable
- Slew rate 30 V/µs
- Low input offset voltage 50 µV typ., 200 µV max.
- Low input bias current: 2 pA typ.
- Low input voltage noise density 5 nV/√Hz @ 10 kHz
- Wide supply voltage range: 2.2 V to 5.5 V
- Rail-to-rail input and output
- Extended temperature range: 40 °C to +125 °C
- Automotive grade version available
- Benefits:
 - Accuracy of measurement virtually unaffected by noise or input bias current
 - Signal conditioning for high frequencies

Applications

- High bandwidth low-side and high-side current sensing
- Photodiode transimpedance amplification
- A/D converters input buffers
- Power management in solar-powered systems
- Power management in automotive applications

Description

The TSV791 and TSV792 are single and dual 50 MHz-bandwidth unity-gain-stable amplifiers. The rail-to-rail input stage and the slew rate of 30 V/µs make the TSV791 and TSV792 ideal for low-side current measurement. The excellent accuracy provided by maximum input voltage of 200 µV allows amplifying accurately small-amplitude input signal. The TSV792 can operate from a 2.2 V to 5.5 V single supply it can typically handle an output capacitor up to 1 nF and is fully specified on a load of 22 pF, therefore allowing easy usage as A/D converters input buffer.

Maturity status link							
	TSV791, TSV792						
Related products							
TSZ181 TSZ182	Zero drift amplifiers with more power savings (3 MHz)						
TSB712	36 V high-bandwidth amplifiers (6 MHz)						
TSB7192	36 V high-bandwidth amplifiers (20 MHz)						

4.2 Construction note

	P/N	P/N	P/N	P/N	P/N	
	LM2903WST	LM2904WST	TSV992IST	TSX922IST	TSV792IST	
Wafer/Die fab. information	-	-	-	-	-	
Wafer fab manufacturing location	ST Singapore	ST Singapore	ST Singapore	UMC Taiwan	ST Crolles	
Technology	Bipolar	Bipolar	HF5CMOS	HVG8A	HCMOS7A	
Die finishing back side	RAW SILICON	RAW SILICON	LAPPED SILICON	LAPPED SILICON	RAW SILICON	
Die size (microns)	1120x1050	1280x1210	1070x1100	1700x1400	938x1638	
Bond pad metallization layers	AlSiCu	AlSiCu	AlCu	AlCu	AlCu	
Passivation type	Nitride	Nitride	PSG + NITRIDE	PSG + NITRIDE	PSG + NITRIDE + PIX	
	-	Wafer Testing (EWS	S) information		-	
Electrical testing manufacturing loca-	ST Singapore					
tion						
		Assembly info	rmation	-	-	
Assembly site	TSHT	TSHT	TSHT	TSHT	TSHT	
Package description	MiniSO8	MiniSO8	MiniSO8	MiniSO8	MiniSO8	
Molding compound	Hitachi CEL-9220					
Frame material	Cu	Cu	Cu	Cu	Cu	
Die attach process	Epoxy Glue					
Die attach material	Henkel 8200T					
Wire bonding process	Thermosonic ball bonding					
Wires bonding materials/diameters	Cu 1 mil Pd Coated	Cu 0.8 mil Pd Coated				
Lead finishing process	electroplating	electroplating	electroplating	electroplating	electroplating	
Lead finishing/bump solder material	Matte Sn					
Final testing information						
Testing location	TSHT	TSHT	TSHT	TSHT	TSHT	

5 TESTS PLAN SUMMARY

Test vehicle 5.1

Lo t #	Process/ Package	Product Line	Comments
1	Bipolar/MiniSO8	0193	GRAL2024018, T3L2017LG0295 and T3L2017LG0296
2	Bipolar/MiniSO8	0358	GRAL2024017 and T3L2017LG0304 and T3L2017LG0303
3	HF5CMOS/MiniSO8	V992	T3L2017LG0317 and T3L2017LG0316
4	HVG8A/MiniSO8	UY32	T3L2019HC0361and T3L2019HC0362
5	HCMOS7A	VB2F	

5.2 Test plan summary

						Failure/SS					
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1 0193	Lot 2 0358	Lot3 V992	Lot 4 UY32	Lot 5 VB2F	Note
					168 H	0/77	0/77	77	77	0/77	Lot 1, 2 at 150°C
HTB/	N	JESD22	$T_{2} = 125^{\circ}C \text{ or } 150^{\circ}C \text{ BIAS}$		500 H	0/77	0/77	77	77	0/77	
HTOL	14	A-108	1a – 125 C 61 150 C, BIAS		1000 H	0/77	0/77	77	77	0/77	
ELFR	Ν	JESD22 A-008	Ta = 150°C or 150°C, BIAS		48H	0/800	0/240				
					168 H	2x0/50	3x0/50	2x0/50	2x0/50	0/77	
		IEED22			500 H	2x0/50	3x0/50	2x0/50	2x0/50	0/77	
HTSL	Ν	JESD22 A 103	$Ta = 150^{\circ}C$		1000 H	2x0/50	3x0/50	2x0/50	2x50	0/77	
		A-105			1500H		0/50			0/77	
					2000H					0/77	
					-	-	-		-	-	-
РС		JESD22 A-113	Drying 24 H @ 125 °C Store 168 H @ Ta=85 °C Rh=85% Over Reflow @ Tpeak=260 °C 3 times		Final	PASS	PASS	PASS	PASS	PASS	
UHAST	Y	JESD22 A-102	85%RH / Ta=130°C		96 H	2x0/77	3X0/77	2X0/77	0/77	0/77	
					100 cy	2x0/77	3x0/77	2x0/77	2x0/77	0/77	
		IESD22			200cy	2x0/77	3x0/77	2x0/77	2x0/77	0/77	
TC	Y	JESD22	Ta = -55° C to 150° C		500 cy	2x0/77	3x0/77	2x0/77	2x0/77	0/77	
		A-104			1000cy	2x0/77	3x0/77	2x0/77	2x77	0/77	
					2500cy		0/77				
					168 H	0/77	0/77	77	77	0/77	
THB	v	JESD22	$T_{2} = 85^{\circ}C$ RH = 85% BIAS		500 H	0/77	0/77	77	77	0/77	
IIID	1	A-101	1a = 0.5 C, R1 = 0.5 /0, DIAS		1000 H	0/77	0/77	77	77	0/77	
					1500H		0/77			0/77	

6 ANNEXES

6.1 **Tests Description**

Test name	Description	Purpose	
Die Oriented			
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating con- dition in an accelerated way. The typical failure modes are related to, sili- con degradation, wire-bonds degradation, ox- ide faults.	
HTRB High Temperature Reverse Bias HTFB / HTGB High Temperature Forward (Gate) Bias	The device is stressed in static configura- tion, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffu- sion process and internal circuitry limita- tions;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating con- dition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.	
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms acti- vated by high temperature, typically wire- bonds solder joint ageing, data retention faults, metal stress-voiding.	
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.	
Package Oriented			
PC Preconditioning	The device is submitted to a typical temper- ature profile used for surface mounting de- vices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" ef- fect and delamination.	
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.	
TC Temperature Cy- cling	The device is submitted to cycled tempera- ture excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the dif- ferent thermal expansion of the materials in- teracting in the die-package system. Typical failure modes are linked to metal displace- ment, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.	

Report ID 2020-W45 -MiniSOSTD

Test name	Description	Purpose
TF / IOL Thermal Fatigue / Intermittent Oper- ating Life	The device is submitted to cycled tem- perature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materi- als interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds fail- ure, die-attach layer degradation.
THB Temperature Humi- dity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambi- ent temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his suscep- tibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.